Umrechnung dB, dBm, dBµV, dBmV, dBuV, Ueff, Uss

"dB" Dezibel ist ein logarithimsches Maß, um Leistungs- und Spannungsverhältnisse für Wechselspannungen anzugeben. Bei Signalen, deren Werte mehrere Größenordnungen annehmen können vereinfacht das die Darstellung. Die Werte sind "handlicher".

$$\textit{Bei Spannungen gilt}: \quad U[dB] = 20 \times \log_{10} \frac{U}{U_0} \quad \textit{Bei Leistungen gilt}: \quad P[dB] = 10 \times \log_{10} \frac{P}{P_0}$$

dB	Leistungsverhältnis	Spannungsverhältnis
+60dB	x 1 000 000	x 1.000
+40dB	x 10 000	x 100
+30dB	x 1000	x 30
+20dB	x 100	x 10
+18dB	x 63	x 8
+16dB	x 40	x 6,3
+14dB	x25	x 5
+12dB	x 16	x 4
+10dB	x 10	x 3
+8dB	x 6,3	x 2,5
+6dB	x 4	x 2
+3dB	x 2	x 1,4
+2dB	x 1,6	x 1,25
+1dB	x 1,3	x 1,1
0dB	x 1	x 1
-1dB	x 0,8	x 0,9
-2dB	x 0,63	x 0,8
-3dB	x 0,5	x 0.7
-6dB	: 4	: 2
-8dB	: 6,3	: 2,5
-10dB	: 10	: 3
-20dB	: 100	: 10
-30dB	: 1000	: 30
-40dB	: 10 000	:100
-60dB	: 1 000 000	: 1000

"dBm" ist eine logarithmische relative Leistungsangabe bezogen auf 1mW. 0 dBm entsprechen einer Leistung von 1mW an einem definierten Abschlußwiderstand. Gebräuchlich sind in der Technik nur 3 verschiedene Abschlußwiderstände:

600 Ohm in der traditionellen Telefontechnik (heute eher selten verwendet)

75 Ohm in der Radio u. Fernsehtechnik (Antennen, Sat-Anlagen u.s.w.)

50 Ohm in der Industrie (meist verwendet!)

"Uss" Spitze-Spitze Spannung wird gern verwendet,weil am Scope einfach abzulesen.

"Ueff" Effektivwert der Spannung ablesbar an herkömmlichen Mulitimetern.

"dBuV" dB Mikrovolt ist ein Spannungswert bezogen auf $1\mu V = 0 dB\mu V$ "dBmV" dB Millivolt ist ein Spannungswert bezogen auf 1mV = 0 dBmV

Effektivwerte Spitze – Spitze Werte
$$U_{\it eff} = U_{\it ss} \div 2,86 = U_{\it ss} \bullet 0,35$$
 $U_{\it ss} = U_{\it eff} \bullet 2,86 = U_{\it eff} \div 0,35$

Achtung! Die Schreibweise dBuV wird für $dB\mu V$ Mikrovolt benutzt. So auch in der folgenden Tabelle. Bitte nicht verwechseln mit dBu. Das ist eine logarithmische relative Spannungsangabe, welche sich auf 775mV bezieht.

P [dBm]	P [W]	Ueff [mVeff] an 50 Ohm	Uss [mVss]	U [dBmV] an 50 Ohm	U [dBuV] an 50 Ohm
an 50 Ohm 30dBm	an 50 Ohm 1 000mW	7,07Veff	an 50 Ohm 20,2Vss	77dBmV	137dBuV
29	790	6,3	18,0	76	136
28	630	5,6	16,0	75	135
27	500	5,0	14,3	74	134
26	400	4,45	12,7	73	133
25	320	4,0	11,4	72	132
24	250	3,55	10,1	71	131
23	200	3,16	9,0	70	130
22	160	2,8	8,0	69	129
21	130	2,5	7,1	68	129
20dBm	100mW	2,3 2,25Veff	6,43Vss	67dBmV	128 127dBuV
19	79	2,23 Ven	5,72	66	127dBu v
18	63			65	
10000000	1 97/2002	1,8	5,51	1.759770	125
17	50	1,6	4,58	64	124
16	40	1,4	4,00	63	123
15	32	1,25	3,57	62	122
14	25	1,15	3,30	61	121
13	20	1,0	2,86	60	120
12	16	0,9	2,57	59	119
11	13	0,8	2,28	58	118
10dBm	10mW	707mVeff	2,02Vss	57dBmV	117dBuV
9	7,9	630	1,80	56	116
8	6,3	560	1,60	55	115
7	5,0	500	1,43	54	114
6	4,0	445	1,27	53	113
5	3,2	400	1,14	52	112
4	2,5	355	1,01	51	111
3	2,0	316	0,90	50	110
2	1,6	280	0,80	49	109
1	1,3	250	0,71	48	108
0dBm	1mW	225mVeff	643mVss	47dBmV	107dBuV
-1	0,8	200	572	46	106
-2	0,6	180	515	45	105
-3	0,5	160	458	44	104
-4	0,4	140	400	43	103
-5	0,3	125	357	42	102
-6	0,25	115	330	41	101
-7	0,2	100	286	40	100
-8	0,16	90	257	39	99
-9	0,13	80	228	38	98
-10dBm	100uW	70mVeff	200mVss	37 dBmV	97dBuV
-11	79	63	180	36	96
-12	63	56	160	35	95
-13	50	50	143	34	94
-14	40	45	127	33	93
-15	32	40	114	32	92
-16	25	35	101	31	91
-17	20	32	90	30	90
-18	16	28	80	29	89
-19	13	25	71	28	88
-20dBm	10uW	23mVeff	64mVss	27 dBmV	87dBuV

Р	P	Ueff	Uss	U	U
[dBm]	$[\mathbf{w}]$	[mVeff]	[mVss]	[dBmV]	[dBuV]
an 50 Ohm	an 50 Ohm	an 50 Ohm	an 50 Ohm	an 50 Ohm	an 50 Ohm
-22	6,3	18	51	25	85
-24	4,0	14	40	23	83
-26	2,5	11	33	21	81
-28	1,6	9	26	19	79
-30dBm	1uW	7mVeff	20mVss	17 dBmV	77dBuV
-32	0,63	5,6	16	15	75
-34	0,40	4,5	13	13	73
-36	0,25	3,5	10	11	71
-38	0,16	2,8	8,0	9	69
-40dBm	100nW	2,3mVeff	6,4mVss	7 dBmV	67dBuV
-42	63	1,8	5,1	5	65
-44	40	1,4	4,0	3	63
-46	25	1,1	3,3	1	61
-48	16	0,9	2,6	-1	59
-50dBm	10nW	720uVeff	2,0mVss	-3 dBmV	57dBuV
-52	6,3	560	1,6	-5	55
-54	4,0	450	1,3	-7	53
-56	2,5	350	1,0	-9	51
-58	1,6	280	0,8	-11	49
-60dBm	1nW	230uVeff	640uVss	-13 dBmV	47dBuV
-62	0,63	180	510	-15	45
-64	0,40	140	400	-17	43
-66	0,25	115	330	-19	41
-68	0,16	90	260	-21	39
-70dBm	100pW	72uVeff	200uVss	-23 dBmV	37dBuV
-72	63	56	160	-25	35
-74	40	45	130	-27	33
-76	25	35	100	-29	31
-78	16	28	80	-31	29
-80dBm	10pW	23uVeff	64uVss	-33 dBmV	27dBuV
-82	6,3	18	51	-35	25
-84	4,0	14	40	-37	23
-86	2,5	12	33	-39	21
-88	1,6	9,0	26	-41	19
-90dBm	1pW	7,2uVeff	20uVss	-43	17dBuV
-92	0,63	5,6	16	-45	15
-94	0,40	4,5	13	-47	13
-96	0,25	3,5	10	-49	11
-98	0,16	2,8	8,0	-51	9
-100dBm	0,1pW	2,3uVeff	6,4uVss	-53 dBmV	7dBuV
-102	0,063	1,8	5,1	-55	5
-104	0,04	1,4	4,0	-57	3
-106	0,025	1,2	3,3	-59	0.99
-108	0,016	0,9	2,6	-61	-1,01
-110dBm	0,01pW	0,72uVeff	2,0uVss	-63 dBmV	-3dBuV
-112	0,0063	0,56	1,6	-65	-5
-114	0,004	0,45	1,3	-67	-7
-116	0,0025	0,35	1,0	-69	-9
-118	0,0016	0,28	0,8	-71	-11
-120dBm	1fW	0,23uVeff	0,64uVss	-73 dBmV	-13dBuV